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Two-Step Moduli Stabilization

KKLT proposal for type-IIB [Kachru-Kallosh-Linde-Trivedi’03]

W = Wflux (U,S) + Wnp(U,S,T ), ,

gives enough dynamics for all moduli!

Too many moduli! O(50− 100).

1 Stabilize S and the U i by Wflux .
2 Stabilize T i by Wnp, regarding S

and U i frozen.
3 Break SUSY and get a vanishing

Cosmological Constant using a
decoupled sector.

KKLTpot
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Simplified vs. proper effective theory

A system ruled by
W = W0(H) + W1(H,L).

Simplified
1 Motivated by the fact

W0 �W1 ,

regard the H as fixed by W0
at “SUSY” points regardless
the L fields.

2 “Efective” simplified theory:

Wsim(L) = W0(H0) + W1(H0,L),

Ksim(L,L) = K (H0,H0,L,L),

fAB,sim(L) = fAB(H0,L),

Proper effective action
The H should be integrated out

∂L
∂H

∣∣∣∣
H0(L)

= 0 ,

and the effective theory is

Leff (L) = L(H0(L),L) .

Usually is harder to proceed
than with the original theory!

hola
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Is this procedure reliable?

Can this be done with light fields?

[Choi-Falkowski-Nilles-Olechowski-Pokorski ’04, deAlwis ’05, Abe-Higaki-Kobayashi ’06, Blanco-Pillado–Kallosh–Linde ’06,

Choi-Jeong-Okumora ’08 & ’09, Brizi-GomezReino-Scruca’09&10]

[Achucarro et al ’07-’08-’10]
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Decoupling of the Equation of Motion

A N = 1 SUGRA in 4D, with

W (H i ,Lα) = W0(H i) + εW1(H i ,Lα) , ε� 1 .

Scalar potential without gauge interactions,

V = eK
(

K M̄NDM̄WDNW − 3|W |2
)
ε→0−→eK

(
K M̄NDM̄W 0DNW0−3|W0|2

)
,

with i running over the H ’s and α over the L’s

DiW0 = ∂iW0 + (∂iK )W0 , DαW0 = (∂αK )W0 .

SUSY solution F0,i = DiW0 = 0, not decoupled for generic K !
Two ways for SUSY decoupling

1 A tuning in the W VEV: 〈W0〉 ∼ O(ε).
2 Factorizable structure: [Achucarro et al. ’07-’08]

K = KH(H, H̄) + KL(L, L̄) +O(ε) .
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SUSY effective theory for 〈W0〉 ∼ O(ε)

Truncated equations of motion (e.o.m.) [Brizi–Gómez-Reino-Scrucca ’09]

The chiral superfield e.o.m.
∂HW = 0 ,

is exact at leading order ∂µ

mH
, ψα

m3/2
H

, Fα

m2
H

and F Φ

mH
with mH = ∂H∂HW .

Around ∂iW = 0 with 〈W0〉 ∼ O(ε) the corrections are negligible O(ε3)!

For KKLT-like models [DG-Serone’08-’09]

At the vacuum the superpotential is tiny ensuring a mass hierarchy. Then if

The H multiplets are neutral.

The lowest component is dictated by the scalar equation ∂HWo = 0.

Wsim, Ksim and fAB,sim are reliable at leading order in ε ∼ mL/mH .

The mass hierarchy explains the decoupling!
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But in the natural case 〈W 〉 ∼ 1...

There is no superfield chiral e.o.m. in the market. [DG in preparation]

There is NO MASS HIERARCHY: all scales are naturally given by

mH ∼ mL ∼ MSUSY ∼ O(〈eK/2|W |〉) .

Large Volume Scenario (LVS) [Quevedo-Cambridge]

The CY volume, V, is stabilized at exponentially large values.

No need for a tuning in W ! 〈W 〉 ∼ 1 .

SUSY broken at low energies MS ∼ e−V , [Balasubramanian et al. ’05]

Testable TeV spectra, Inflationary models, ect... [Quevedo-Cambridge, ect]

But

All fields, including the Dilaton and Complex structure
Wo(H) = WCS(S,U), get masses of the same order ∼ MS.
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Pure moduli case

Type-IIB orientifold compactifications, S and U i to be frozen.
4D, N = 1 SUGRA with, KCS = KCS(S,U), [Becker2 et al. ’02]

K = −2 log
(
V + ξ (S + S)3/2) +KCS , W = WCS + A e−at .

In case V = V(T , t ′s) very large the mixing is very small!

Factorizable models [Binetruy et al. ’04]

Described by a Kähler invariant function G = K + log |W |2 such that

G(H, H̄,L, L̄) = GH(H, H̄) + GL(L, L̄) + εGmix (H, H̄,L, H̄) ,

with ε� 1, H and L two field sectors. [Achucarro et al.’08, DG-Serone’08]

Mixing in the Lagrangian is suppressed and the sectors are decoupled.

SAME ARGUMENTS APPLY FOR THE LVS!
The simplified version is reliable at leading order in ε ∼ 1/V ∼ A e−at .
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Matter multiplets [DG’11]

Necessary in any realistic scenario. They break factorizability!

K ⊃ Z (H, H̄,L, L̄)|Q|2 .

Generalized factorizable models
Such that, with φM = {H,M,Q},

G(H, H̄,L, L̄) = GH(H, H̄) + GM(M,M̄) + εGmix (φ, φ̄) .

Analyze from the scalar Lagrangian, [Kaku et al.’78, Kugo et al.’82]

L =GMM̄∂µφ
M∂µφ̄M̄ + GMF MŪ + GM̄F

M̄
U

+

(
GMM̄ −

1
3

GMGM̄

)
F MF M̄ − 3UŪ − 3e

G
2 (U + Ū) ,

φM =
(
φM ,−F M)

, and we fixed Φ = eG(1,−U
)

the conf. compensator.
In order to hold manifestly SUSY we keep the auxiliary components!

D. Gallego (UPTC) On the Effective Description of LVS SUSY 2011, FERMILAB 9 / 13



Matter multiplets [DG’11]

Necessary in any realistic scenario. They break factorizability!

K ⊃ Z (H, H̄,L, L̄)|Q|2 .

Generalized factorizable models
Such that, with φM = {H,M,Q},

G(H, H̄,L, L̄) = GH(H, H̄) + GM(M,M̄) + εGmix (φ, φ̄) .

Analyze from the scalar Lagrangian, [Kaku et al.’78, Kugo et al.’82]

L =GMM̄∂µφ
M∂µφ̄M̄ + GMF MŪ + GM̄F
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Integrating out the H i = {H i ,−F i} multiplets

E.o.m. and effective Lagrangian

For F i the usual s.t. Gi = e−G/2GiN̄F N̄ , for the lowest component

GijF jŪ + Gij k̄F jF
k̄ − 1

2
(U + 3Ū)Gi j̄F

j̄ − 1
3

GijGN̄F jF
N̄

−1
3

GMGi j̄F
MF

j̄ −Gi j̄∂
2H̄ j̄ + Gi j̄ k̄∂

µH̄ j̄∂µH̄ k̄ = O(ε) .

No kinetic mixing!

Slow varying sol’s, F i = O(ε)⇒ Gi = O(ε). Then H = Ho + ε∆H(L):

∂iGH = (∂iWH + ∂iKHWH) /W̄H
∣∣
H0

= 0 . leading F-flatness.

Ho, L-independent!. Effective Lagrangian for the Lα = {M′s,Q′s}

Leff = Gαβ̄∂µLα∂µL̄ᾱ + GαFαŪ + GᾱF
ᾱ
U

+
(

Gαβ̄ −GαGβ̄/3
)

FαF β̄ − 3UŪ − 3e
G
2 (U + Ū) +O(ε2) ,

= Lsimp +O(ε2) .

The simplified description is valid at leading order in ε!
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G
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Gauge interactions [DG’11]

Gauge isometries of the scalar manifold generated by holomorphic
Killing vectors δφI = ΛAX M

A , A = 1,2, · · · dim(G).
from gauge invariance GA = −iX I

AGI not all H i field are fixed by
the equations Gi = 0, unless neutral.
if charged the H i can be sourced back by the gauge fields.
THE H MULTIPLETS SHOULD BE NEUTRAL!

The analysis is affected by

L ⊃ GADA +
1
2

hABDADB ,

hAB = Re(fAB) the gauge kin. functions and V A = {V A,DA} the vector
superfields.
The e.o.m. for the lowest components is changed by

∂iL ⊃ DADB∂ihAB + suppressed.

If SUSY is D-broken it back reacts in the H, i.e., F i ∼ D2, no SUSY!
Moreover H is L-dependent, not decoupled!
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LVS with matter and gauge interactions

Suppressed wave functions are indeed realized (ε ∼ 1/V) [Conlon et al. ’06]

K ⊃ Z
Vn |Q|

2 , n > 0 modular weight.

Not possible a general study: at least three different
suppression factors. Particular studies:

I W independent of Q, [Cremades et al. ’07]

I Q dependen W , Nc < Nf < 3Nc/2 [Krippendorf-Quevedo ’09]

I Q dependen W , Nf < Nc .
In type-IIB orientifolds with fluxes, [Lust et al. ’04]

f = T + κS ,

κ ∼ 1 so ∂Hh = O(1) !
Nicely now the D’s are suppressed the constrain is avoided!

The corrections to the simplified version are always suppressed
by some powers of the volume!
Independent of the modular weights!
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Conclusions

Decoupling of light chiral fields, in a SUSY fashion, can be
understood through the generalized factorizable models.

I the frozen fields be neutral,
I the frozen values be dictated by ∂iGH = 0.
I the gauge kinetic function dependency be suppressed, i.e.,
∂ihAB ∼ ε.

In explicit realizations, LVS, the last condition is relaxed!
The simplified description misses terms

I suppressed by powers of V, lead by modular weight indep. ones!
I non-suppressed higher order operators.

Outlook: The factorizables models, in general, present a context
where regardless the lack of a scale hierarchy with the SUSY
breaking scale the effective description is still SUSY.

I How can be this understood from a superspace point of view?

Thank you!
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